AN INTRODUCTION TO GAMESS

Mark S. Gordon lowa State University

GAMESS

- General Atomic and Molecular Electronic Structure System
- General purpose electronic structure code
- Primary focus is on ab initio quantum chemistry calculations
- Also can do
 - Density functional calculations
 - Other semi-empirical calculations (AM1, PM3)
 - QM/MM calculations

- Types of wavefunctions
 - Hartree-Fock (RHF, ROHF, UHF)
 - CASSCF
 - CI, MRCI
 - Second order perturbation theory
 - MP2 (closed shells)
 - ROMP2 (spin-correct open shells)
 - UMP2 (unrestricted open shells
 - MCQDPT(CASSCF MRMP2)
 - Localized orbitals (SCF, MCSCF)

- Energy-related properties
 - Total energy as function of nuclear coordinates (PES): All wavefunction types
 - Analytic energy gradient
 - RHF, ROHF, UHF, MCSCF, CI, MP2
 - ROMP2, UMP2, DFT in progress
 - Analytic hessian
 - RHF, ROHF, TCSCF
 - MCSCF in progress

- Energy-related properties (cont'd)
 - Numerical hessians from finite differences of analytic gradients
 - Saddle point (TS) search (requires hessian)
 - Minimum energy path=Intrinsic reaction coordinate
 - Several IRC options GS2 is most effective
 - Requires frequency input, gradients along path
 - Follow reaction path from reactants through TS to products
 - Build reaction path Hamiltonian (RPH)

- Energy-related properties (cont'd)
 - Dynamic reaction coordinate (DRC)
 - Add kinetic energy to system at any geometry
 - Add photon(s) to any vibrational mode
 - Classical trajectory using QM-derived energies
 - Requires gradients
 - Monte Carlo sampling (not in distributed code)
 - Molecular dynamics (in progress)

- Other functionalities
 - Spin-orbit coupling
 - Any spin states, any number of states
 - Full two-electron Breit-Pauli
 - Partial two-electron (P2e)-very efficient, accurate
 - Semi-empirical one-electron Z_{eff}
 - RESC (in progress)
 - Averaging over vibrational states
 - Derivative (vibronic) coupling: planned

Other functionalities

- Localized molecular orbitals (LMO)
- Localized charge distributions (LCD)
- Spin densities at nucleus (ESR)
- NMR spin-spin couplings (in progress)
- NMR chemical shifts (in progress)
- Polarizabilities, hyperpolarizabilities
- IR and Raman intensities

QM/MM Methods

- Effective fragment potential (EFP) method for
 - Cluster studies of liquids
 - Cluster studies of solvent effects
 - Interfaced with continuum methods for study of liquids and solvation in bulk
 - Covalent link for study of enzymes, proteins, materials
- SIMOMM: QM/MM method for surface chemistry
 - QM part can be any method in GAMESS
 - MM part from Tinker (Jay Ponder)

- GAMESS runs on
 - Any UNIX-based system available in the US
 - Any Linux-based system
 - Any Macintosh
 - Windows-based PC_GAMESS available (written by Alex Granovsky, distributed by ISU group)
- GAMESS can be obtained from
 - www.msg.ameslab.gov
 - License required no cost

- For Macintosh drop input file on icon
- For UNIX/LINUX systems requires script
- Output appears in .log file
- Vectors, coordinates, hessians appear in .dat file
- IRC data, numerical restart data for frequencies appear in .irc file

- Input files are modular, arranged in \$groups
- Most common input groups
 - \$SYSTEM: specifies memory, time limit
 - \$CONTRL: specifies basics of calculation
 - \$BASIS: specifies basis set if standard
 - \$DATA: specifies nuclear coordinates, basis set if non-standard
- Other important groups:
 - -\$GUESS, \$HESS, \$VEC, \$IRC, \$VIB

- \$ sign specifying group must be in column 2
- All groups must terminate with \$END (this \$ can be anywhere except column 1)

- \$SYSTEM group:
 - TIMLIM=(default=600 min)
 - MWORDS=(default=1)
 - MEMDDI=
 - Only relevant for parallel run
 - Total required memory (divide by number of processors to get memory requested/node)

- \$CONTRL group:
 - ICHARG= (specifies charge on system)
 - MULT= (specifies spin multiplcity)
 - 1 for singlet, 2 for doublet, ...
 - EXETYP=
 - Check: checks input for errors
 - Run: actual run
 - UNITS=
 - angs (default)
 - bohr

- \$CONTRL group:
 - Runtyp= (type of run)
 - Energy (single point energy run)
 - Gradient (energy 1st derivative wrt coordinates)
 - Optimize (optimize geometry)
 - Hessian (energy second derivative, vibrational frequencies, thermodynamic properties): generates \$HESS group in .dat file)
 - Sadpoint (saddle point search:requires hessian in \$HESS group)
 - IRC (performs IRC calculation: usually requires \$IRC group, \$HESS group)

- \$CONTRL group:
 - scftyp= (type of wavefunction)
 - RHF
 - ROHF
 - UHF
 - MCSCF
 - GVB
 - mplevI=
 - 0 (no perturbation theory)
 - 2 (MP2: valid for RHF, ROHF, MCSCF, GVB)

- \$BASIS group:
 - GBASIS=
 - STO
 - N21
 - N31
 - TZV...
 - NGAUSS=(# gaussians for STO, N21, N31)
 - NDFUNC=(# sets of d's on heavy atoms
 - NPFUNC=(# sets of p's on hydrogens)
 - NFFUNC=(# sets of f's on TM's)

- \$BASIS group:
 - DIFFSP=(# sets of diffuse sp on heavies)
 - DIFFS=(# diffuse s functions hydrogens)
- \$DATA group
 - Title line (will be printed in output)
 - Symmetry group
 - C1
 - CS
 - CNV 2 (C2V), ...
 - Blank line except C1

- \$DATA group
 - Symbol Z xcoord ycoord zcoord
 - Symbol = atomic symbol
 - Z = atomic number
 - xcoord,ycoord, zcoord = Cartesian coords
 - Internal coords is another option
 - Repeat this line for each symmetry unique atom (see below)
 - Need to specify basis set after each coordinate line if \$BASIS is not present

- \$DATA group
 - symmetry unique atoms
 - H₂O: O and 1 H
 - NH₃: N and 1 H
 - saves CPU time (e.g., numerical hessians only displace symmetry unique atoms)
 - Need to follow conventions in GAMESS manual
 - C_s, C_{nh}: plane is XY
 - C_{nv}: axis is Z

- \$GUESS group
 - Built-in guess works much of the time
 - GUESS=MOREAD, NORB=xx \$END
 - Requires \$VEC group (usually from .dat file)
 - NORB=# MO's to be read in
 - Useful when SCF convergence is difficult
 - Necessary for MCSCF, CI

LET'S DO A FEW EXAMPLES

• To run GAMESS on cluster:

- Telnet to tumbe

- Account: cluster

- Password: Coca Cola

Read the READ.ME.gamess file

FINANCIAL SUPPORT

- Air Force Office of Scientific Research
- National Science Foundation
- DoD CHSSI Software Development
- Ames Laboratory
- DoD HPC Grand Challenge Program

